Secondary Conservative Finite Difference Schemes for Moving Grids
نویسندگان
چکیده
منابع مشابه
Nonstandard finite difference schemes for differential equations
In this paper, the reorganization of the denominator of the discrete derivative and nonlocal approximation of nonlinear terms are used in the design of nonstandard finite difference schemes (NSFDs). Numerical examples confirming then efficiency of schemes, for some differential equations are provided. In order to illustrate the accuracy of the new NSFDs, the numerical results are compared with ...
متن کاملConservative finite difference schemes for the Degasperis-Procesi equation
We consider the numerical integration of the Degasperis–Procesi equation, which was recently introduced as a completely integrable shallow water equation. For the equation, we propose nonlinear and linear finite difference schemes that preserve two invariants associated with the bi-Hamiltonian form of the equation at a same time. We also prove the unique solvability of the schemes, and show som...
متن کاملFully Conservative Higher Order Finite Difference Schemes for Incompressible Flow
Conservation properties of the mass, momentum, and kinetic energy equations for incompressible flow are specified as analytical requirements for a proper set of discrete equations. Existing finite difference schemes in regular and staggered grid systems are checked for violations of the conservation requirements and a few important discrepancies are pointed out. In particular, it is found that ...
متن کاملConservative properties of finite difference schemes for incompressible flow
1. Motivation and objectives The purpose of this research is to construct accurate finite difference schemes for incompressible unsteady flow simulations such as LES (large-eddy simulation) or DNS (direct numerical simulation). Experience has shown that kinetic energy conservation of the convective terms is required for stable incompressible unsteady flow simulations. Arakawa (1966) showed that...
متن کاملnonstandard finite difference schemes for differential equations
in this paper, the reorganization of the denominator of the discrete derivative and nonlocal approximation of nonlinear terms are used in the design of nonstandard finite difference schemes (nsfds). numerical examples confirming then efficiency of schemes, for some differential equations are provided. in order toillustrate the accuracy of the new nsfds, the numerical results are compared with s...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: TRANSACTIONS OF THE JAPAN SOCIETY OF MECHANICAL ENGINEERS Series B
سال: 2012
ISSN: 0387-5016,1884-8346
DOI: 10.1299/kikaib.78.1